IGBT/功率MOSFET是一種電壓控制器件,用作電源電路和電機驅(qū)動器等系統(tǒng)中的開關(guān)元件。柵極是每個設(shè)備的電氣隔離控制端子。 MOSFET的其他端子是源極和漏極,對于IGBT,它們被稱為集電極和發(fā)射極。
為了工作MOSFET/IGBT,通常必須向柵極施加相對于器件源極/發(fā)射極的電壓。專用驅(qū)動器用于向功率器件的柵極施加電壓并提供驅(qū)動電流。
為什么需要柵極驅(qū)動器
IGBT/功率MOSFET的結(jié)構(gòu)使得柵極形成非線性電容器。對柵極電容充電會使功率器件導通并允許電流在其漏極和源極端子之間流動,而放電時,它會關(guān)閉器件,然后可能會在漏極和源極端子上阻塞大電壓。
柵極電容充電且器件幾乎可以導通時的最小電壓是閾值電壓(V千).對于將 IGBT/功率 MOSFET 用作開關(guān),電壓要大于 V千應(yīng)應(yīng)用于柵極和源極/發(fā)射極之間。
考慮一個帶有微控制器的數(shù)字邏輯系統(tǒng),該微控制器可以在其中一個I/O引腳上輸出0 V至5 V的PWM信號。該PWM不足以完全打開電源系統(tǒng)中使用的功率器件,因為其過驅(qū)動電壓通常超過標準CMOS/TTL邏輯電壓。
因此,在邏輯/控制電路和高功率器件之間需要一個接口。這可以通過驅(qū)動邏輯電平n溝道MOSFET來實現(xiàn),而邏輯電平n溝道MOSFET又可以驅(qū)動功率MOSFET,如圖1a所示。
圖1.采用反相邏輯驅(qū)動的功率 MOSFET。
如圖 1a 所示,當 IO1發(fā)出低信號,VGSQ1< VTHQ1因此,MOSFET Q1仍然關(guān)閉。因此,在功率MOSFET Q的柵極處施加正電壓2.Q的柵極電容2(CGQ2) 通過上拉電阻 R 充電1并將柵極電壓拉至V的軌電壓DD.給定 VDD> VTHQ2/ 22打開并可以傳導。
當 IO1輸出高電平,Q1打開和 CGQ2通過 Q 放電1.VDSQ1~ 0 V 使得 VGSQ2< VTHQ2因此,Q2關(guān)閉。此設(shè)置的一個問題是 R 中的功耗1在 Q 狀態(tài)期間1.為了克服這個問題,pMOSFET Q3可用作上拉,以與Q互補的方式運行1,如圖1b所示。
PMOS具有低導通電阻,并且在關(guān)斷狀態(tài)下具有非常高的電阻,因此大大降低了驅(qū)動電路中的功耗。為了控制柵極轉(zhuǎn)換期間的邊沿速率,在Q漏極之間外部增加了一個小電阻1和Q之門2.使用MOSFET的另一個優(yōu)點是易于在芯片上制造它,而不是制造電阻器。
這種用于驅(qū)動電源開關(guān)柵極的獨特接口可以以單片IC的形式創(chuàng)建,該IC接受邏輯電平電壓并產(chǎn)生更高的功率輸出。該柵極驅(qū)動器IC幾乎總是具有額外的內(nèi)部電路以實現(xiàn)更大的功能,但它主要用作功率放大器和電平轉(zhuǎn)換器。
柵極驅(qū)動器的關(guān)鍵參數(shù)
驅(qū)動強度:
提供適當柵極電壓的問題通過使用執(zhí)行電平轉(zhuǎn)換器工作的柵極驅(qū)動器來解決。但是,柵極電容器不能瞬時改變其電壓。因此,功率FET或IGBT具有非零的有限開關(guān)間隔。
在開關(guān)過程中,器件可能處于高電流和高電壓狀態(tài),從而導致熱量形式的功耗。因此,從一種狀態(tài)到另一種狀態(tài)的轉(zhuǎn)換需要快速,以最大限度地減少切換時間。為此,需要高瞬態(tài)電流來快速對柵極電容進行充電和放電。
圖2.MOSFET 導通過渡,無需柵極驅(qū)動器
能夠在較長時間內(nèi)供應(yīng)/吸收更高柵極電流的驅(qū)動器產(chǎn)生較短的開關(guān)時間,從而降低其驅(qū)動的晶體管內(nèi)的開關(guān)功率損耗。
圖3.MOSFET 通過柵極驅(qū)動器導通過渡。
微控制器I/O引腳的拉電流和灌電流額定值通常高達數(shù)十毫安,而柵極驅(qū)動器可以提供更高的電流。在圖2中,當功率MOSFET由微控制器I/O引腳在其最大額定源電流下驅(qū)動時,觀察到較長的開關(guān)間隔。
如圖3所示,使用隔離式柵極驅(qū)動器ADuM4121可顯著縮短轉(zhuǎn)換時間,該驅(qū)動器提供比微控制器I/O引腳高得多的驅(qū)動電流,驅(qū)動相同功率的MOSFET。
在許多情況下,直接使用微控制器驅(qū)動更大功率的MOSFET/IGBT可能會過熱并損壞控制,因為數(shù)字電路中可能存在電流過敏。具有更高驅(qū)動能力的柵極驅(qū)動器可實現(xiàn)快速開關(guān),上升和下降時間為幾納秒。這降低了開關(guān)功率損耗,使系統(tǒng)更加高效。因此,驅(qū)動電流通常被認為是選擇柵極驅(qū)動器的重要指標。
與驅(qū)動電流額定值對應(yīng)的是漏源導通電阻(RDS(ON)) 的柵極驅(qū)動器。雖然理想情況下 RDS(ON)MOSFET 在完全導通時的值應(yīng)為零,由于其物理結(jié)構(gòu),它通常在幾歐姆的范圍內(nèi)。這考慮了從漏極到源極的電流路徑中的總串聯(lián)電阻。
RDS(ON)是柵極驅(qū)動器最大驅(qū)動強度額定值的真正基礎(chǔ),因為它限制了驅(qū)動器可以提供的柵極電流。RDS(ON)的內(nèi)部開關(guān)決定灌電流和拉電流,但外部串聯(lián)電阻用于降低驅(qū)動電流,從而影響邊沿速率。
如圖4所示,高端導通電阻和外部串聯(lián)電阻R內(nèi)線在充電路徑中形成柵極電阻,低側(cè)導通電阻與R內(nèi)線在放電路徑中形成柵極電阻。
圖4.具有MOSFET輸出級和功率器件作為電容器的柵極驅(qū)動器的RC電路模型。
RDS(ON)還直接影響驅(qū)動器內(nèi)部的功耗。對于特定的驅(qū)動電流,較低的值為RDS(ON)允許更高的R內(nèi)線要使用的。由于功耗分布在R之間內(nèi)線和 RDS(ON),R 的值越高 內(nèi)線意味著更多的功率耗散在驅(qū)動器外部。因此,為了提高系統(tǒng)效率并放寬驅(qū)動器內(nèi)的任何熱調(diào)節(jié)要求,較低的R值DS(ON)對于給定的芯片面積和IC尺寸,是優(yōu)選的。
〈烜芯微/XXW〉專業(yè)制造二極管,三極管,MOS管,橋堆等,20年,工廠直銷省20%,上萬家電路電器生產(chǎn)企業(yè)選用,專業(yè)的工程師幫您穩(wěn)定好每一批產(chǎn)品,如果您有遇到什么需要幫助解決的,可以直接聯(lián)系下方的聯(lián)系號碼或加QQ/微信,由我們的銷售經(jīng)理給您精準的報價以及產(chǎn)品介紹
聯(lián)系號碼:18923864027
QQ:709211280